Effect of atmospheric-controlled induction-heating fine particle peening on electrochemical characteristics of austenitic stainless steel

Shoichi Kikuchi, Shota Iwamae, Hiroyuki Akebono, Jun Komotori, Keisuke Kadota

研究成果: Article査読

14 被引用数 (Scopus)

抄録

Atmospheric-controlled induction-heating fine particle peening (AIH-FPP) using Cr and Mo shot particles in a N2 atmosphere was introduced to improve the electrochemical characteristics of AISI 316 austenitic stainless steel. The surface microstructure of the AIH-FPP-treated specimen was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDX). AIH-FPP can be used to form transferred and diffused layers of shot particles on the surface of austenitic stainless steel. The thickness of the diffusion layers of Cr shot particles tended to increase with the heating time in the AIH-FPP process, whereas the Cr concentration at the surface tended to decrease. Electrochemical polarization tests were performed in 3 wt% NaCl + H2SO4 and 20 wt% NaCl environments at 343 K using a three-electrode electrochemical cell connected to a computer driven potentiostat to examine the corrosion resistance of austenitic stainless steel treated with AIH-FPP. The pitting potential of the AIH-FPP-treated specimen was higher than that of the untreated specimen. In particular, there was clear improvement in the pitting potential of austenitic stainless steel by AIH-FPP with Cr shot particles following peening with Mo shot particles. AIH-FPP using Cr and Mo shot particles in a N2 atmosphere is an effective method of improving the electrochemical characteristics of austenitic stainless steel.

本文言語English
ページ(範囲)189-195
ページ数7
ジャーナルSurface and Coatings Technology
334
DOI
出版ステータスPublished - 2018 1 25

ASJC Scopus subject areas

  • 化学 (全般)
  • 凝縮系物理学
  • 表面および界面
  • 表面、皮膜および薄膜
  • 材料化学

フィンガープリント

「Effect of atmospheric-controlled induction-heating fine particle peening on electrochemical characteristics of austenitic stainless steel」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル