Effect of reaction solvent on the preparation of thermo-responsive stationary phase through a surface initiated atom transfer radical polymerization

Kenichi Nagase, Aya Mizutani Akimoto, Jun Kobayashi, Akihiko Kikuchi, Yoshikatsu Akiyama, Hideko Kanazawa, Teruo Okano

研究成果: Article査読

39 被引用数 (Scopus)

抄録

Poly(N-isopropylacrylamide) (PIPAAm) brush grafted silica beads, a thermo-responsive chromatographic stationary phase, were prepared through a surface-initiated atom transfer radical polymerization (ATRP) using 2-propanol, N,N-dimethylformamide (DMF), and water as reaction solvents. The rate of grafting PIPAAm on silica bead surfaces was different and found to be dependent on the reactivity of reaction solvent. Temperature-dependent elution profiles of hydrophobic steroids from the prepared-beads-packed columns were found to be different, although the graft amounts of PIPAAm were similar on silica bead surfaces. Especially, prepared beads using 2-propanol exhibited a higher resolution than those using DMF. Calibration curves using glucose and pullulan suggested that beads prepared using DMF prohibited analytes to diffuse into the pores. On the contrary, beads prepared using 2-propanol allowed analytes to diffuse into the pores. The pore diameter of the prepared beads, measured by N 2 adsorption-desorption measurement, suggested that beads using 2-propanol has relatively larger pore diameter than those using DMF. Thus, the reaction solvent in surfaces-initiated ATRP affected the grafting configuration of PIPAAm on porous silica-bead surfaces, leading to the different separation efficiency of stationary phase for bioactive compounds.

本文言語English
ページ(範囲)8617-8628
ページ数12
ジャーナルJournal of Chromatography A
1218
48
DOI
出版ステータスPublished - 2011 12月 2

ASJC Scopus subject areas

  • 分析化学
  • 生化学
  • 有機化学

フィンガープリント

「Effect of reaction solvent on the preparation of thermo-responsive stationary phase through a surface initiated atom transfer radical polymerization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル