TY - JOUR
T1 - Effect of Ultra-High-Resolution CT on Pseudoenhancement in Renal Cysts
T2 - A Phantom Experiment and Clinical Study
AU - Hamabe, Fumiko
AU - Mikoshi, Ayako
AU - Edo, Hiromi
AU - Sugiura, Hiroaki
AU - Okano, Kousuke
AU - Yamada, Yoshitake
AU - Jinzaki, Masahiro
AU - Shinmoto, Hiroshi
N1 - Funding Information:
Supported in part by Keio Gijuku Academic Development Funds for the creation of the phantom design.
Funding Information:
Supported in part by Keio Gijuku Academic Development Funds for the creation of the phantom design. We thank Kenta Matsuda and Takuto Noguchi for their valuable support with image collection, Kazuya Minamishima and Yoshiki Owaki (Office of Radiological Technology, Keio University Hospital) and Koichi Sugisawa (e Medical Tokyo Co., Ltd.) for allowing the use of their phantom, and Naoki Edo (Division of Behavioral Science, National Defense Medical College Research Institute) and Takahiro Nakamura (Department of Mathematics, National Defense Medical College) for their assistance with statistical analysis in this study.
Publisher Copyright:
© American Roentgen Ray Society.
PY - 2022/10
Y1 - 2022/10
N2 - BACKGROUND. Ultra-high-resolution CT (UHRCT) allows acquisition using a small detector element size, in turn allowing very high spatial resolutions. The high resolution may reduce partial-volume averaging and thereby renal cyst pseudoenhancement. OBJECTIVE. The purpose of this article was to assess the impact of UHRCT on renal cyst pseudoenhancement. METHODS. A phantom was constructed that contained 7-, 15-, and 25-mm simulated cysts within compartments simulating unenhanced and nephrographic phase renal parenchyma. The phantom underwent two UHRCT acquisitions using 0.25- and 0.5-mm detector elements, with reconstruction at varying matrices and slice thicknesses. A retrospective study was performed of 36 patients (24 men, 12 women; mean age, 75.7 ± 9.4 [SD] years) with 118 renal cysts who underwent renal-mass protocol CT using UHRCT and the 0.25-mm detector element, with reconstruction at varying matrices and slice thicknesses; detector element size could not be retrospectively adjusted. ROIs were placed to measure cysts’ attenuation increase from unenhanced to nephrographic phases (to reflect pseudoenhancement) and SD of unenhanced phase attenuation (to reflect image noise). RESULTS. In the phantom, attenuation increase was lower for the 0.25- than 0.5-mm detector element for the 15-mm cyst (4.6 ± 2.7 HU vs 6.8 ± 2.9 HU, p = .03) and 25-mm cyst (2.3 ± 1.4 HU vs 3.8 ± 1.2 HU, p = .02), but not the 7-mm cyst (p = .72). Attenuation increase was not different between 512 × 512 and 1024 × 1024 matrices for any cyst size in the phantom or patients (p > .05). Attenuation increase was not associated with slice thickness for any cyst size in the phantom or in patients for cysts that were between 5 mm and less than 10 mm and those that were 10 mm and larger (p > .05). For cysts smaller than 5 mm in patients, attenuation increase showed decreases with thinner slices, though there was no significant difference between 0.5-mm and 0.25-mm (3-mm slice: 23.7 ± 22.5 HU; 2-mm slice: 20.2 ± 22.7 HU; 0.5-mm slice: 11.6 ± 17.5 HU; 0.25-mm slice: 12.6 ± 19.7 HU; p < .001). Smaller detector element size, increased matrix size, and thinner slices all increased image noise for cysts of all sizes in the phantom and patients (p < .05). CONCLUSION. UHRCT may reduce renal cyst pseudoenhancement through a smaller detector element size and, for cysts smaller than 5 mm, very thin slices; however, these adjustments result in increased noise. CLINICAL IMPACT. Although requiring further clinical evaluation, UHRCT may facilitate characterization of small cystic renal lesions, thereby reducing equivocal interpretations and follow-up recommendations.
AB - BACKGROUND. Ultra-high-resolution CT (UHRCT) allows acquisition using a small detector element size, in turn allowing very high spatial resolutions. The high resolution may reduce partial-volume averaging and thereby renal cyst pseudoenhancement. OBJECTIVE. The purpose of this article was to assess the impact of UHRCT on renal cyst pseudoenhancement. METHODS. A phantom was constructed that contained 7-, 15-, and 25-mm simulated cysts within compartments simulating unenhanced and nephrographic phase renal parenchyma. The phantom underwent two UHRCT acquisitions using 0.25- and 0.5-mm detector elements, with reconstruction at varying matrices and slice thicknesses. A retrospective study was performed of 36 patients (24 men, 12 women; mean age, 75.7 ± 9.4 [SD] years) with 118 renal cysts who underwent renal-mass protocol CT using UHRCT and the 0.25-mm detector element, with reconstruction at varying matrices and slice thicknesses; detector element size could not be retrospectively adjusted. ROIs were placed to measure cysts’ attenuation increase from unenhanced to nephrographic phases (to reflect pseudoenhancement) and SD of unenhanced phase attenuation (to reflect image noise). RESULTS. In the phantom, attenuation increase was lower for the 0.25- than 0.5-mm detector element for the 15-mm cyst (4.6 ± 2.7 HU vs 6.8 ± 2.9 HU, p = .03) and 25-mm cyst (2.3 ± 1.4 HU vs 3.8 ± 1.2 HU, p = .02), but not the 7-mm cyst (p = .72). Attenuation increase was not different between 512 × 512 and 1024 × 1024 matrices for any cyst size in the phantom or patients (p > .05). Attenuation increase was not associated with slice thickness for any cyst size in the phantom or in patients for cysts that were between 5 mm and less than 10 mm and those that were 10 mm and larger (p > .05). For cysts smaller than 5 mm in patients, attenuation increase showed decreases with thinner slices, though there was no significant difference between 0.5-mm and 0.25-mm (3-mm slice: 23.7 ± 22.5 HU; 2-mm slice: 20.2 ± 22.7 HU; 0.5-mm slice: 11.6 ± 17.5 HU; 0.25-mm slice: 12.6 ± 19.7 HU; p < .001). Smaller detector element size, increased matrix size, and thinner slices all increased image noise for cysts of all sizes in the phantom and patients (p < .05). CONCLUSION. UHRCT may reduce renal cyst pseudoenhancement through a smaller detector element size and, for cysts smaller than 5 mm, very thin slices; however, these adjustments result in increased noise. CLINICAL IMPACT. Although requiring further clinical evaluation, UHRCT may facilitate characterization of small cystic renal lesions, thereby reducing equivocal interpretations and follow-up recommendations.
KW - MDCT
KW - cystic
KW - diagnostic imaging
KW - image enhancement
KW - kidney diseases
UR - http://www.scopus.com/inward/record.url?scp=85138492215&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85138492215&partnerID=8YFLogxK
U2 - 10.2214/AJR.22.27354
DO - 10.2214/AJR.22.27354
M3 - Article
C2 - 35583427
AN - SCOPUS:85138492215
VL - 219
SP - 624
EP - 633
JO - The American journal of roentgenology and radium therapy
JF - The American journal of roentgenology and radium therapy
SN - 0361-803X
IS - 4
ER -