Efficient allocation mechanism with endowments and distributional constraints

Takamasa Suzuki, Akihisa Tamura, Makoto Yokoo

研究成果: Conference contribution

4 被引用数 (Scopus)

抄録

We consider an allocation problem of multiple types objects to agents, where each type of an object has multiple copies (e.g., mult iple seats of a school), each agent is endowed with an object, and some distributional constraints are imposed on the allocation (e.g., minimum/maximum quotas). We develop a mechanism that is based on the Top Trading Cycles mechanism, which Is strategy-proof, feasible (always satisfies distributional constraints). Pareto efficient, and individually rational, assuming the distributional constraints are represented as an M-convex set. The class of distributional cons traints we consider contains many situations raised from realistic matching problems, including individual minimum/maximum quot as, regional maximum quotas, type-specific quotas, and distance constraints. To the best of our knowledge, we are the first to develop a mechanism with these desirable properties.

本文言語English
ホスト出版物のタイトル17th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2018
出版社International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)
ページ50-67
ページ数18
ISBN(印刷版)9781510868083
出版ステータスPublished - 2018
イベント17th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2018 - Stockholm, Sweden
継続期間: 2018 7 102018 7 15

出版物シリーズ

名前Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
1
ISSN(印刷版)1548-8403
ISSN(電子版)1558-2914

Other

Other17th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2018
国/地域Sweden
CityStockholm
Period18/7/1018/7/15

ASJC Scopus subject areas

  • 人工知能
  • ソフトウェア
  • 制御およびシステム工学

フィンガープリント

「Efficient allocation mechanism with endowments and distributional constraints」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル