Eigenfunctions of the Perron–Frobenius operators for generalized beta-maps

研究成果: Article査読

抄録

For every generalized β-map τ introduced by Góra [P. Góra, Invariant densities for generalized β-maps, Ergod. Theory Dyn. Syst. 27 (2007), pp. 1583–1598], we find an explicit formula for a basis of the (generalized) eigenspace corresponding to an isolated eigenvalue of its Perron–Frobenius operator on the space of functions of bounded variation. From this formula, we see that any (generalized) eigenfunction is a singular function related to the orbit at 1 by the map τ. In addition, as a consecutive work of the paper [S. Suzuki, Artin-Mazur zeta functions of generalized β-transformations, Kyushu J. Math. 71 (2017), pp. 85–103], the analytic continuation of its lap-counting function is given by the generating function for the coefficient sequence of the τ-expansion of 1.

本文言語English
ページ(範囲)9-28
ページ数20
ジャーナルDynamical Systems
37
1
DOI
出版ステータスPublished - 2022

ASJC Scopus subject areas

  • 数学 (全般)
  • コンピュータ サイエンスの応用

フィンガープリント

「Eigenfunctions of the Perron–Frobenius operators for generalized beta-maps」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル