Endfeet serve as diffusion-limited subcellular compartments in astrocytes

研究成果: Article

19 引用 (Scopus)

抜粋

Astrocytes extend their processes to make contact with neurons and blood vessels and regulate important processes associated with the physiology/pathophysiology of the brain. Their elaborate morphology, with numerous fine processes, could allow them to perform complex signal transductions with distinct compartments or to function as a spatial buffer depending on the diffusion properties of their intracellular molecules. Apart from calcium ions, however, the diffusion dynamics of molecules within astrocytes are poorly understood. In this study, we applied two-photon uncaging and fluorescence recovery after photobleaching of fluorescent molecules to acute cortical brain slices from mice to investigate the diffusion dynamics of molecules within astrocytes. We found that diffusion was significantly more restricted at the endfeet than at trunks and distal ends of other processes. Slow diffusion dynamics at the endfeet resulted in a large population of molecules being retained in a small region for tens of seconds, creating subcellular compartments that were isolated from other regions. In contrast, diffusion was fast and free at other processes. The same patterns were observed with the diffusions of a higher molecular weight (10 kDa) molecule and 2-NBDG, a fluorescent analog of glucose. These findings suggest that molecular diffusion is not uniform across the intracellular environment and that subcellular compartments are present in astrocytes. Therefore, similar to neurons, the elaborate and specialized structures of astrocytes may enable them to perform complex computations by providing distinct information storage/processing capacity among processes.

元の言語English
ページ(範囲)3692-3698
ページ数7
ジャーナルJournal of Neuroscience
33
発行部数8
DOI
出版物ステータスPublished - 2013 2 20

    フィンガープリント

ASJC Scopus subject areas

  • Neuroscience(all)

これを引用