TY - JOUR
T1 - Endothelial Cell Transcytosis Assay as an In Vitro Model to Evaluate Inner Blood-Retinal Barrier Permeability
AU - Bora, Kiran
AU - Wang, Zhongxiao
AU - Yemanyi, Felix
AU - Maurya, Meenakshi
AU - Blomfield, Alexandra K.
AU - Tomita, Yohei
AU - Chen, Jing
N1 - Funding Information:
This work was supported by NIH grants (R01 EY028100, EY024963, and EY031765) to JC. ZW was supported by a Knights Templar Eye Foundation Career Starter Grant.
Publisher Copyright:
© 2022 JoVE Journal of Visualized Experiments.
PY - 2022/6
Y1 - 2022/6
N2 - Dysfunction of the blood-retinal barrier (BRB) contributes to the pathophysiology of several vascular eye diseases, often resulting in retinal edema and subsequent vision loss. The inner blood-retinal barrier (iBRB) is mainly composed of retinal vascular endothelium with low permeability under physiological conditions. This feature of low permeability is tightly regulated and maintained by low rates of paracellular transport between adjacent retinal microvascular endothelial cells, as well as transcellular transport (transcytosis) through them. The assessment of retinal transcellular barrier permeability may provide fundamental insights into iBRB integrity in health and disease. In this study, we describe an endothelial cell (EC) transcytosis assay, as an in vitro model for evaluating iBRB permeability, using human retinal microvascular endothelial cells (HRMECs). This assay assesses the ability of HRMECs to transport transferrin and horseradish peroxidase (HRP) in receptor-and caveolae-mediated transcellular transport processes, respectively. Fully confluent HRMECs cultured on porous membrane were incubated with fluorescent-tagged transferrin (clathrin-dependent transcytosis) or HRP (caveolae-mediated transcytosis) to measure the levels of transferrin or HRP transferred to the bottom chamber, indicative of transcytosis levels across the EC monolayer. Wnt signaling, a known pathway regulating iBRB, was modulated to demonstrate the caveolae-mediated HRP-based transcytosis assay method. The EC transcytosis assay described here may provide a useful tool for investigating the molecular regulators of EC permeability and iBRB integrity in vascular pathologies and for screening drug delivery systems.
AB - Dysfunction of the blood-retinal barrier (BRB) contributes to the pathophysiology of several vascular eye diseases, often resulting in retinal edema and subsequent vision loss. The inner blood-retinal barrier (iBRB) is mainly composed of retinal vascular endothelium with low permeability under physiological conditions. This feature of low permeability is tightly regulated and maintained by low rates of paracellular transport between adjacent retinal microvascular endothelial cells, as well as transcellular transport (transcytosis) through them. The assessment of retinal transcellular barrier permeability may provide fundamental insights into iBRB integrity in health and disease. In this study, we describe an endothelial cell (EC) transcytosis assay, as an in vitro model for evaluating iBRB permeability, using human retinal microvascular endothelial cells (HRMECs). This assay assesses the ability of HRMECs to transport transferrin and horseradish peroxidase (HRP) in receptor-and caveolae-mediated transcellular transport processes, respectively. Fully confluent HRMECs cultured on porous membrane were incubated with fluorescent-tagged transferrin (clathrin-dependent transcytosis) or HRP (caveolae-mediated transcytosis) to measure the levels of transferrin or HRP transferred to the bottom chamber, indicative of transcytosis levels across the EC monolayer. Wnt signaling, a known pathway regulating iBRB, was modulated to demonstrate the caveolae-mediated HRP-based transcytosis assay method. The EC transcytosis assay described here may provide a useful tool for investigating the molecular regulators of EC permeability and iBRB integrity in vascular pathologies and for screening drug delivery systems.
UR - http://www.scopus.com/inward/record.url?scp=85132586119&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85132586119&partnerID=8YFLogxK
U2 - 10.3791/64076
DO - 10.3791/64076
M3 - Article
C2 - 35758707
AN - SCOPUS:85132586119
SN - 1940-087X
VL - 2022
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 184
M1 - e64076
ER -