Equilibrium measures for the Hénon map at the first bifurcation: Uniqueness and geometric/statistical properties

Samuel Senti, Hiroki Takahasi

研究成果: Article査読

1 被引用数 (Scopus)

抄録

For strongly dissipative Hénon maps at the first bifurcation parameter where the uniform hyperbolicity is destroyed by the formation of tangencies inside the limit set, we establish a thermodynamic formalism, i.e. we prove the existence and uniqueness of an invariant probability measure that minimizes the free energy associated with a noncontinuous geometric potential -t log Ju, where t 2 R is in a certain large interval and Ju denotes the Jacobian in the unstable direction. We obtain geometric and statistical properties of these measures.

本文言語English
ジャーナルErgodic Theory and Dynamical Systems
760
DOI
出版ステータスPublished - 2014 11 17

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

フィンガープリント 「Equilibrium measures for the Hénon map at the first bifurcation: Uniqueness and geometric/statistical properties」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル