Essential self-adjointness of Dirichlet operators on a path space with Gibbs measures via an SPDE approach

Hiroshi Kawabi, Michael Röckner

研究成果: Article

5 引用 (Scopus)

抜粋

The main objective of this paper is to prove the essential self-adjointness of Dirichlet operators in L2 (μ) where μ is a Gibbs measure on an infinite volume path space C (R, Rd). This operator can be regarded as a perturbation of the Ornstein-Uhlenbeck operator by a nonlinearity and corresponds to a parabolic stochastic partial differential equation (= SPDE, in abbreviation) on R. In view of quantum field theory, the solution of this SPDE is called a P (φ{symbol})1-time evolution.

元の言語English
ページ(範囲)486-518
ページ数33
ジャーナルJournal of Functional Analysis
242
発行部数2
DOI
出版物ステータスPublished - 2007 1 15
外部発表Yes

ASJC Scopus subject areas

  • Analysis

フィンガープリント Essential self-adjointness of Dirichlet operators on a path space with Gibbs measures via an SPDE approach' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用