顔の向きに頑健な特徴点検出法と追跡手法の確立

Brian Sumali, Nozomu Hamada, Yasue Mitsukura

研究成果: Article査読

抄録

Recently, there has been an increasing need of a face alignment or facial feature point tracking for applying face recognition, facial expression estimation, face attributes prediction, and clinical face observation etc. This study proposes a robust facial feature tracking method against camera shake and face orientation changes. The method applies a cascaded composed learning (CCL) based facial feature point tracking method by incorporating optical flow for improving tracking accuracy and robustness. Experiments are conducted to show that efficient tracking is achieved by performing CCL combined with initial shape estimation via the optical flow.

寄稿の翻訳タイトルEstablishing robust feature point detection and tracking methods for face orientation
本文言語Japanese
ページ(範囲)367-372
ページ数6
ジャーナルIEEJ Transactions on Electronics, Information and Systems
141
3
DOI
出版ステータスPublished - 2021 3 1

Keywords

  • Cascaded composed learning
  • Face alignment
  • Face feature point tracking
  • Optical flow

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

フィンガープリント 「顔の向きに頑健な特徴点検出法と追跡手法の確立」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル