Evolutionary Gain of Dbx1 Expression Drives Subplate Identity in the Cerebral Cortex

Yoko Arai, Andrzej W. Cwetsch, Eva Coppola, Sara Cipriani, Hidenori Nishihara, Hiroaki Kanki, Yoann Saillour, Betty Freret-Hodara, Annie Dutriaux, Norihiro Okada, Hideyuki Okano, Colette Dehay, Jeannette Nardelli, Pierre Gressens, Tomomi Shimogori, Giuseppe D'Onofrio, Alessandra Pierani

研究成果: Article査読

7 被引用数 (Scopus)


Changes in transcriptional regulation through cis-regulatory elements are thought to drive brain evolution. However, how this impacts the identity of primate cortical neurons is still unresolved. Here, we show that primate-specific cis-regulatory sequences upstream of the Dbx1 gene promote human-like expression in the mouse embryonic cerebral cortex, and this imparts cell identity. Indeed, while Dbx1 is expressed in highly restricted cortical progenitors in the mouse ventral pallium, it is maintained in neurons in primates. Phenocopy of the primate-like Dbx1 expression in mouse cortical progenitors induces ectopic Cajal-Retzius and subplate (SP) neurons, which are transient populations playing crucial roles in cortical development. A conditional expression solely in neurons uncouples mitotic and postmitotic activities of Dbx1 and exclusively promotes a SP-like fate. Our results highlight how transcriptional changes of a single fate determinant in postmitotic cells may contribute to the expansion of neuronal diversity during cortical evolution.

ジャーナルCell Reports
出版ステータスPublished - 2019 10月 15

ASJC Scopus subject areas

  • 生化学、遺伝学、分子生物学(全般)


「Evolutionary Gain of Dbx1 Expression Drives Subplate Identity in the Cerebral Cortex」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。