Exceptional algebraic relations for reciprocal sums of Fibonacci and Lucas numbers

Carsten Elsner, Shun Shimomura, Iekata Shiokawa

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

We discuss algebraic relations for reciprocal sums of Fibonacci and Lucas numbers. For a certain set of 12 such sums, we show that any two numbers are algebraically independent, and that any three are algebraically independent except for those in 22 exceptional triplets. We explicitly present algebraic relations for some of these exceptional cases.

本文言語English
ホスト出版物のタイトルDiophantine Analysis and Related Fields 2011, DARF - 2011
ページ17-31
ページ数15
DOI
出版ステータスPublished - 2011 11 25
イベントDiophantine Analysis and Related Fields 2011, DARF - 2011 - Musashino, Tokyo, Japan
継続期間: 2011 3 32011 3 5

出版物シリーズ

名前AIP Conference Proceedings
1385
ISSN(印刷版)0094-243X
ISSN(電子版)1551-7616

Other

OtherDiophantine Analysis and Related Fields 2011, DARF - 2011
国/地域Japan
CityMusashino, Tokyo
Period11/3/311/3/5

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Exceptional algebraic relations for reciprocal sums of Fibonacci and Lucas numbers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル