Exchangeable measures for subshifts

J. Aaronson, H. Nakada, O. Sarig

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Let Ω be a Borel subset of SN where S is countable. A measure is called exchangeable on Ω, if it is supported on Ω and is invariant under every Borel automorphism of Ω which permutes at most finitely many coordinates. De-Finetti's theorem characterizes these measures when Ω = SN. We apply the ergodic theory of equivalence relations to study the case Ω ≠ SN, and obtain versions of this theorem when Ω is a countable state Markov shift, and when Ω is the collection of beta expansions of real numbers in [0, 1] (a non-Markovian constraint).

本文言語English
ページ(範囲)727-751
ページ数25
ジャーナルAnnales de l'institut Henri Poincare (B) Probability and Statistics
42
6
DOI
出版ステータスPublished - 2006 11
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「Exchangeable measures for subshifts」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル