Existence of solutions of scalar field equations with fractional operator

研究成果: Article査読

16 被引用数 (Scopus)

抄録

In this paper, the existence of least energy solution and infinitely many solutions is proved for the equation (1 - Δ) αu= f(u) in RN where 0 < α< 1 , N≥ 2 and f(s) is a Berestycki–Lions type nonlinearity. The characterization of the least energy by the mountain pass value is also considered and the existence of optimal path is shown. Finally, exploiting these results, the existence of positive solution for the equation (1 - Δ) αu= f(x, u) in RN is established under suitable conditions on f(x, s).

本文言語English
ページ(範囲)649-690
ページ数42
ジャーナルJournal of Fixed Point Theory and Applications
19
1
DOI
出版ステータスPublished - 2017 3月 1
外部発表はい

ASJC Scopus subject areas

  • モデリングとシミュレーション
  • 幾何学とトポロジー
  • 応用数学

フィンガープリント

「Existence of solutions of scalar field equations with fractional operator」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル