Experimental and computational fluid dynamic analysis of laboratory-scaled counter-rotating cross-flow turbines in marine environment

Minh N. Doan, Ivan H. Alayeto, Claudio Padricelli, Shinnosuke Obi, Yoshitaka Totsuka

研究成果: Conference contribution

2 引用 (Scopus)

抜粋

Power generation of laboratory-scaled marine hydrokinetic (MHK) cross-flow (vertical axis) turbines in counter-rotating configurations was scrutinized both experimentally and numerically. A tabletop experiment, designed around a magnetic hysteresis brake as the speed controller and a Hall-effect sensor as the speed transducer was built to measure the rotor rotational speed and the hydrodynamic torque generated by the turbine blades. A couple of counter-rotating straight-three-bladed vertical-axis turbines were linked through a transmission of spur gears and timing pulleys/belt and coupled to the electronic instrumentation via flexible shaft couplers. A total of 6 experiments in 3 configurations, with various relative distances and phase angles, were conducted in the water channel facility (3.5 m long, 0.30 m wide, and 0.15 m deep) at rotor diameter base Reynolds number of 20,000. The power curve of the counter-rotating turbines (0.068-m rotor diameter) was measured and compared with that of a single turbine of the same size. Experimental results show the tendency of power production enhancement of different counter-rotating configurations. Additionally, the two-dimensional (2D) turbine wakes and blade hydrodynamic interactions were simulated by the shear stress transport k-omega (SST k-omega) model using OpenFOAM. The computational domain included a stationary region and two rotating regions (for the case of counter-rotating turbines) set at constant angular velocities. The interface between the rotating and stationary region was modeled as separated surface boundaries sliding on each other. Velocity, pressure, turbulent kinetic energy, eddy viscosity, and specific dissipation rate field were interpolated between these boundaries.

元の言語English
ホスト出版物のタイトルDevelopment and Applications in Computational Fluid Dynamics; Industrial and Environmental Applications of Fluid Mechanics; Fluid Measurement and Instrumentation; Cavitation and Phase Change
出版者American Society of Mechanical Engineers (ASME)
2
ISBN(電子版)9780791851562
DOI
出版物ステータスPublished - 2018 1 1
イベントASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018 - Montreal, Canada
継続期間: 2018 7 152018 7 20

Other

OtherASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018
Canada
Montreal
期間18/7/1518/7/20

ASJC Scopus subject areas

  • Mechanical Engineering

フィンガープリント Experimental and computational fluid dynamic analysis of laboratory-scaled counter-rotating cross-flow turbines in marine environment' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Doan, M. N., Alayeto, I. H., Padricelli, C., Obi, S., & Totsuka, Y. (2018). Experimental and computational fluid dynamic analysis of laboratory-scaled counter-rotating cross-flow turbines in marine environment. : Development and Applications in Computational Fluid Dynamics; Industrial and Environmental Applications of Fluid Mechanics; Fluid Measurement and Instrumentation; Cavitation and Phase Change (巻 2). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/FEDSM2018-83030