First-principles study on the origin of band-gap reduction in si-lattice matched (formula presented)

M. Ohfuti, Y. Awano, N. Yokoyama

研究成果: Article査読

7 被引用数 (Scopus)

抄録

The electronic structure of a Si-lattice matched (Formula presented) crystal, with (Formula presented) and (Formula presented) is studied using a first-principles energy-band calculation. The state at the bottom of the conduction bands in the (Formula presented) is found to be similar to that in the (Formula presented) crystal with the same x. The band gap of the (Formula presented) crystal is smaller than the unstrained (Formula presented) crystal and agrees with that of the (Formula presented) virtually lattice matched to the (Formula presented) crystal. The band gap of a (Formula presented) crystal with the same y is larger than or equal to that of the Si crystal. It can be concluded that the band-gap reduction in the (Formula presented) crystal is attributed to a lattice shrinkage effect resulting from the introduction of the small C and does not originate from the chemical effect by the introduced C. The calculated coefficient of the band-gap reduction in the (Formula presented) alloy agrees well with that reported for y up to 1% in an experiment, which suggests that the band-gap reduction for the low-C concentrations observed in the experiment may be explained by the origin found numerically for (Formula presented)

本文言語English
ページ(範囲)15515-15518
ページ数4
ジャーナルPhysical Review B - Condensed Matter and Materials Physics
60
23
DOI
出版ステータスPublished - 1999 1月 1
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学

フィンガープリント

「First-principles study on the origin of band-gap reduction in si-lattice matched (formula presented)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル