Flow-type microbial chip for screening of a single bacterium

T. Kano, T. Inaba, K. Higashi, N. Miki

研究成果: Article査読

2 被引用数 (Scopus)

抄録

A microbial chip is demonstrated that immobilises microbes into micro holes using positive dielectrophoresis (DEP) for efficient screening. The DEP frequency was set at 10 MHz, which was found to be most effective to selectively immobilise live bacteria. The media including reactive agents can be flown into the chip continuously and therefore the reaction products can be continuously collected. Immobilisation of microbes enables quantification of the number of microbes involved in the reaction and makes their reactions conditions consistent. These advantages enable the proposed microbial chip to evaluate the production capacity of a single bacterium. To demonstrate it, the developed microbial chip was used to characterise microbes and evaluate biological activity. First, Corynebacterium bacterium was used as a sample bacteria. The chip successfully revealed the production capacity of lactic acid by a single C. bacterium. It was experimentally found that the production rate of lactic acid of Corynebacterium glutamicum increased 1.7 times and 3.8 times by adding pyruvic acid and sodium bicarbonate, respectively. Secondly, microbes belonging to the Corynebacterium group with respect to the lactic acid production were screened. Corynebacterium variabile was experimentally found to be the most productive among three tested members. The proposed microbial chip is readily applicable to an efficient microbial screening platform and potentially a reliable microbial sensor given the capacity of quantifying the total number of bacteria involved in the microbial reaction.

本文言語English
ページ(範囲)1213-1216
ページ数4
ジャーナルMicro and Nano Letters
7
12
DOI
出版ステータスPublished - 2012 12 1

ASJC Scopus subject areas

  • バイオエンジニアリング
  • 生体医工学
  • 材料科学(全般)
  • 凝縮系物理学

フィンガープリント

「Flow-type microbial chip for screening of a single bacterium」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル