Forbidden triples generating a finite set of 3-connected graphs

Yoshimi Egawa, Michitaka Furuya, Jun Fujisawa, Michael D. Plummer, Akira Saito

研究成果: Article査読

3 被引用数 (Scopus)

抄録

For a graph G and a set F of connected graphs, G is said be F-free if G does not contain any member of F as an induced subgraph. We let G3 (F) denote the set of all 3-connected F-free graphs. This paper is concerned with sets F of connected graphs such that |F| = 3 and G3(F) is finite. Among other results, we show that for an integer m ≥ 3 and a connected graph T of order greater than or equal to 4, G3({K4,K2,m, T}) is finite if and only if T is a path of order 4 or 5.

本文言語English
論文番号013
ジャーナルElectronic Journal of Combinatorics
22
3
DOI
出版ステータスPublished - 2015 7月 17

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 幾何学とトポロジー
  • 離散数学と組合せ数学
  • 計算理論と計算数学
  • 応用数学

フィンガープリント

「Forbidden triples generating a finite set of 3-connected graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル