TY - GEN
T1 - Force-based variable compliance control method for bilateral system with different degrees of freedom
AU - Motoi, Naoki
AU - Kubo, Ryogo
AU - Shimono, Tomoyuki
AU - Kawamura, Atsuo
PY - 2012/6/4
Y1 - 2012/6/4
N2 - This paper proposes the force-based variable compliance control method for a bilateral system which consists of master and slave robots with different degree of freedom (DOF). In order to control the bilateral system with this assumption, bilateral control between master and slave robots for task realization and automation control for adaptation to environment in contact with a slave robot are necessary. In this paper, automation control for adaptation to environment in contact with a slave robot is focused on. Considering the automatic control of slave system, the control method should be switched according to the contact condition. In the case of non-contact motion, the position of the slave system is not decided by using the conventional force controller. Therefore, unexpected contact between the slave system and the object may occur. In order to avoid this unexpected contact motion, the position of slave system should be controlled in the case of non-contact motion. When the slave system contacts the object, the force control should be implemented to achieve the stable contact. In this paper, the force-based variable compliance control method is proposed to achieve 2 desired motion. The validity of the proposed method is confirmed by the experimental results.
AB - This paper proposes the force-based variable compliance control method for a bilateral system which consists of master and slave robots with different degree of freedom (DOF). In order to control the bilateral system with this assumption, bilateral control between master and slave robots for task realization and automation control for adaptation to environment in contact with a slave robot are necessary. In this paper, automation control for adaptation to environment in contact with a slave robot is focused on. Considering the automatic control of slave system, the control method should be switched according to the contact condition. In the case of non-contact motion, the position of the slave system is not decided by using the conventional force controller. Therefore, unexpected contact between the slave system and the object may occur. In order to avoid this unexpected contact motion, the position of slave system should be controlled in the case of non-contact motion. When the slave system contacts the object, the force control should be implemented to achieve the stable contact. In this paper, the force-based variable compliance control method is proposed to achieve 2 desired motion. The validity of the proposed method is confirmed by the experimental results.
UR - http://www.scopus.com/inward/record.url?scp=84861610409&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861610409&partnerID=8YFLogxK
U2 - 10.1109/AMC.2012.6197052
DO - 10.1109/AMC.2012.6197052
M3 - Conference contribution
AN - SCOPUS:84861610409
SN - 9781457710711
T3 - International Workshop on Advanced Motion Control, AMC
BT - Abstracts - 2012 12th IEEE International Workshop on Advanced Motion Control, AMC 2012
T2 - 2012 12th IEEE International Workshop on Advanced Motion Control, AMC 2012
Y2 - 25 March 2012 through 27 March 2012
ER -