Fractional calculus and analytic continuation of the complex fourier-jacobi transform

Kawazoe Takeshi, Liu Jianming

研究成果: Article査読

2 被引用数 (Scopus)

抄録

By using the Riemann-Liouville type fractional integral operators we shall reduce the complex Fourier-Jacobi transforms of even functions on R to the Euclidean Fourier transforms. As an application of the reduction formula, Parseval’s formula and an inversion formula of the complex Jacobi transform are easily obtained. Moreover, we shall introduce a class of even functions, not C and not compactly supported on R, whose transforms have meromorphic extensions on the upper half plane.

本文言語English
ページ(範囲)187-207
ページ数21
ジャーナルTokyo Journal of Mathematics
27
1
DOI
出版ステータスPublished - 2004

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Fractional calculus and analytic continuation of the complex fourier-jacobi transform」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル