TY - JOUR
T1 - Fractional instantons and bions in the O(N) model with twisted boundary conditions
AU - Nitta, Muneto
N1 - Publisher Copyright:
© 2015, The Author(s).
PY - 2015/3/1
Y1 - 2015/3/1
N2 - Abstract: Recently, multiple fractional instanton configurations with zero instanton charge, called bions, have been revealed to play important roles in quantum field theories on compactified spacetime. In two dimensions, fractional instantons and bions have been extensively studied in the ℂPN−1 model and the Grassmann sigma model on ℝ1 × S1 with the ℤN symmetric twisted boundary condition. Fractional instantons in these models are domain walls with a localized U(1) modulus twisted half along their world volume. In this paper, we classify fractional instantons and bions in the O(N) nonlinear sigma model on ℝN−2 × S1 with more general twisted boundary conditions in which arbitrary number of fields change sign. We find that fractional instantons have more general composite structures, that is, a global vortex with an Ising spin (or a half-lump vortex), a half sine-Gordon kink on a domain wall, or a half lump on a “space-filling brane” in the O(3) model (ℂP1 model) on ℝ1 × S1, and a global monopole with an Ising spin (or a half-Skyrmion monopole), a half sine-Gordon kink on a global vortex, a half lump on a domain wall, or a half Skyrmion on a “space-filling brane” in the O(4) model (principal chiral model or Skyrme model) on ℝ2 × S1. We also construct bion configurations in these models.
AB - Abstract: Recently, multiple fractional instanton configurations with zero instanton charge, called bions, have been revealed to play important roles in quantum field theories on compactified spacetime. In two dimensions, fractional instantons and bions have been extensively studied in the ℂPN−1 model and the Grassmann sigma model on ℝ1 × S1 with the ℤN symmetric twisted boundary condition. Fractional instantons in these models are domain walls with a localized U(1) modulus twisted half along their world volume. In this paper, we classify fractional instantons and bions in the O(N) nonlinear sigma model on ℝN−2 × S1 with more general twisted boundary conditions in which arbitrary number of fields change sign. We find that fractional instantons have more general composite structures, that is, a global vortex with an Ising spin (or a half-lump vortex), a half sine-Gordon kink on a domain wall, or a half lump on a “space-filling brane” in the O(3) model (ℂP1 model) on ℝ1 × S1, and a global monopole with an Ising spin (or a half-Skyrmion monopole), a half sine-Gordon kink on a global vortex, a half lump on a domain wall, or a half Skyrmion on a “space-filling brane” in the O(4) model (principal chiral model or Skyrme model) on ℝ2 × S1. We also construct bion configurations in these models.
KW - Sigma Models
KW - Solitons Monopoles and Instantons
UR - http://www.scopus.com/inward/record.url?scp=84925939608&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84925939608&partnerID=8YFLogxK
U2 - 10.1007/JHEP03(2015)108
DO - 10.1007/JHEP03(2015)108
M3 - Article
AN - SCOPUS:84925939608
SN - 1126-6708
VL - 2015
SP - 1
EP - 38
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 3
M1 - 108
ER -