Functions on the real line with nonnegative fourier transforms

Takeshi Kawazoe, Yoshikazu Onoe, Kazuya Tachizawa

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Unlike an integrable function on the unit circle which has the nonnegative Fourier coefficients and is square-integrable near the origin, an integrable function on the real line which has the nonnegative Fourier transform and is square-integrable near the origin is not always square-integrable on the real line. We give some examples, and consider an additional condition which guarantees the global square-integrability. Moreover, we treat an analogous problem for an integrable function on the real line which has non-negative wavelet coefficients of the Fourier transform and is squareintegrable near the origin.

本文言語English
ページ(範囲)311-320
ページ数10
ジャーナルTohoku Mathematical Journal
46
3
DOI
出版ステータスPublished - 1994 9

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Functions on the real line with nonnegative fourier transforms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル