### 抜粋

Unlike an integrable function on the unit circle which has the nonnegative Fourier coefficients and is square-integrable near the origin, an integrable function on the real line which has the nonnegative Fourier transform and is square-integrable near the origin is not always square-integrable on the real line. We give some examples, and consider an additional condition which guarantees the global square-integrability. Moreover, we treat an analogous problem for an integrable function on the real line which has non-negative wavelet coefficients of the Fourier transform and is squareintegrable near the origin.

元の言語 | English |
---|---|

ページ（範囲） | 311-320 |

ページ数 | 10 |

ジャーナル | Tohoku Mathematical Journal |

巻 | 46 |

発行部数 | 3 |

DOI | |

出版物ステータス | Published - 1994 |

### ASJC Scopus subject areas

- Mathematics(all)

## フィンガープリント Functions on the real line with nonnegative fourier transforms' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

Kawazoe, T., Onoe, Y., & Tachizawa, K. (1994). Functions on the real line with nonnegative fourier transforms.

*Tohoku Mathematical Journal*,*46*(3), 311-320. https://doi.org/10.2748/tmj/euclid.tmj.1178225714