GaN-based image deblurring using DCT discriminator

Hiroki Tomosada, Takahiro Kudo, Takanori Fujisawa, Masaaki Ikehara

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

In this paper, we propose high quality image debluring by using discrete cosine transform (DCT) with less computational complexity. Recently, Convolutional Neural Network (CNN) and Generative Adversarial Network (GAN) based algorithms have been proposed for image deblurring. Moreover, multi-scale architecture of CNN restores blurred image cleary and suppresses more ringing artifacts or block noise, but it takes much time to process. To solve these problems, we propose a method that preserves texture and suppresses ringing artifacts in the restored image without multi-scale architecture using DCT based loss named “DeblurDCTGAN.”. It compares frequency domain of the images made from deblurred image and ground truth image by using DCT. Hereby, DeblurDCTGAN can reduce block noise or ringing artifacts while maintaining deblurring performance. Our experimental results show that DeblurDCTGAN gets the highest performances on both PSNR and SSIM comparing with other conventional methods in GoPro, DVD, NFS and HIDE test Dataset. Also, the running time per pair of DeblurDCTGAN is faster than others.

本文言語English
ホスト出版物のタイトルProceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
出版社Institute of Electrical and Electronics Engineers Inc.
ページ3675-3681
ページ数7
ISBN(電子版)9781728188089
DOI
出版ステータスPublished - 2020
イベント25th International Conference on Pattern Recognition, ICPR 2020 - Virtual, Milan, Italy
継続期間: 2021 1月 102021 1月 15

出版物シリーズ

名前Proceedings - International Conference on Pattern Recognition
ISSN(印刷版)1051-4651

Conference

Conference25th International Conference on Pattern Recognition, ICPR 2020
国/地域Italy
CityVirtual, Milan
Period21/1/1021/1/15

ASJC Scopus subject areas

  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「GaN-based image deblurring using DCT discriminator」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル