Generalized fuzzy inference neural network using a self-organizing feature map

Hiroshi Kitajima, Masafumi Hagiwara

研究成果: Article査読

1 被引用数 (Scopus)

抄録

A new model for generalized fuzzy inference neural networks (GFINN) is proposed in this paper. The networks consist of three layers: an input-output layer, an if layer, and a then layer. In each layer, there are the operational nodes. A GFINN can perform three representative fuzzy inference methods by changing the connectivity and the operational nodes. There are three learning processes in a GFINN: a self-organizing process, a rule-integration process, and a LMS learning process. In the rule-integration process, a GFINN employs two feature maps in order to integrate appropriate rules effectively. Computer simulations were carried out to show the superiority of a GFINN over back-propagation networks.

本文言語English
ページ(範囲)40-49
ページ数10
ジャーナルElectrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi)
125
3
DOI
出版ステータスPublished - 1998

ASJC Scopus subject areas

  • エネルギー工学および電力技術
  • 電子工学および電気工学

フィンガープリント

「Generalized fuzzy inference neural network using a self-organizing feature map」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル