Generalized Volkenborn Integrals Associated with p -Adic Distributions and the Bernoulli Numbers

研究成果: Article査読

抄録

Abstract: Our goal is to give a formula representing the Bernoulli numbers by p-adic distributions. We consider p-adic distributions on the ring of p-adic integers which are invariant by rotations around the origin, and define a generalization of the Vokenborn integrals with respect to such distributions. It is shown the generalized Volkenborn integrals of power functions, and of negative powers of the p-adic norm converge under some conditions on the distributions, and their universal relation to the Bernoulli numbers is presented.

本文言語English
ページ(範囲)164-171
ページ数8
ジャーナルP-Adic Numbers, Ultrametric Analysis, and Applications
14
2
DOI
出版ステータスPublished - 2022 6月

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Generalized Volkenborn Integrals Associated with p -Adic Distributions and the Bernoulli Numbers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル