TY - JOUR
T1 - Generation of net electric power with a tokamak reactor under foreseeable physical and engineering conditions
AU - Hiwatari, R.
AU - Asaoka, Y.
AU - Okano, K.
AU - Yoshida, T.
AU - Tomabechi, K.
PY - 2004/1/1
Y1 - 2004/1/1
N2 - This study reveals for the first time the plasma performance required for a tokamak reactor to generate net electric power under foreseeable engineering conditions. It was found that the reference plasma performance of the ITER inductive operation mode with βN = 1.8, H H = 1.0, and f n GW = 0.85 had sufficient potential to achieve the electric break-even condition (net electric power Penet = 0 MW) under the following engineering conditions: machine major radius 6.5 m ≤ Rp ≤ 8.5 m, the maximum magnetic field on TF coils B tmax = 16 T, thermal efficiency ηe = 30%, and NBI system efficiency ηNBI = 50%. The key parameters used in demonstrating net electric power generation in tokamak reactors are β N and f nGW. βV ≤ 3.0 is required for P enet ∼ 600 MW with fusion power Pf ∼ 3000MW. On the other hand, fnGW ≥ 1.0 is inevitable to demonstrate net electric power generation, if high temperatures, such as average temperatures of Tave > 16 keV, cannot be selected for the reactor design. To apply these results to the design of a tokamak reactor for demonstrating net electric power generation, the plasma performance diagrams on the Q vs Pf (energy multiplication factor vs fusion power) space for several major radii (i.e. 6.5, 7.5, and 8.5 m) were depicted. From these figures, we see that a design with a major radius Rp ∼ 7.5 m seems preferable for demonstrating net electric power generation when one aims at early realization effusion energy.
AB - This study reveals for the first time the plasma performance required for a tokamak reactor to generate net electric power under foreseeable engineering conditions. It was found that the reference plasma performance of the ITER inductive operation mode with βN = 1.8, H H = 1.0, and f n GW = 0.85 had sufficient potential to achieve the electric break-even condition (net electric power Penet = 0 MW) under the following engineering conditions: machine major radius 6.5 m ≤ Rp ≤ 8.5 m, the maximum magnetic field on TF coils B tmax = 16 T, thermal efficiency ηe = 30%, and NBI system efficiency ηNBI = 50%. The key parameters used in demonstrating net electric power generation in tokamak reactors are β N and f nGW. βV ≤ 3.0 is required for P enet ∼ 600 MW with fusion power Pf ∼ 3000MW. On the other hand, fnGW ≥ 1.0 is inevitable to demonstrate net electric power generation, if high temperatures, such as average temperatures of Tave > 16 keV, cannot be selected for the reactor design. To apply these results to the design of a tokamak reactor for demonstrating net electric power generation, the plasma performance diagrams on the Q vs Pf (energy multiplication factor vs fusion power) space for several major radii (i.e. 6.5, 7.5, and 8.5 m) were depicted. From these figures, we see that a design with a major radius Rp ∼ 7.5 m seems preferable for demonstrating net electric power generation when one aims at early realization effusion energy.
UR - http://www.scopus.com/inward/record.url?scp=0742272606&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0742272606&partnerID=8YFLogxK
U2 - 10.1088/0029-5515/44/1/013
DO - 10.1088/0029-5515/44/1/013
M3 - Article
AN - SCOPUS:0742272606
SN - 0029-5515
VL - 44
SP - 106
EP - 116
JO - Nuclear Fusion
JF - Nuclear Fusion
IS - 1
ER -