Geometric objects in an approach to quantum geometry

Hideki Omori, Yoshiaki Maeda, Naoya Miyazaki, Akira Yoshioka

研究成果: Chapter

5 被引用数 (Scopus)

抄録

Ideas from deformation quantization applied to algebra with one generator lead to the construction of non-linear flat connection, whose parallel sections have algebraic significance. The moduli space of parallel sections is studied as an example of bundle-like objects with discordant (sogo) transition functions, which suggests a method to treat families of meromorphic functions with smoothly varying branch points.

本文言語English
ホスト出版物のタイトルProgress in Mathematics
出版社Springer Basel
ページ303-324
ページ数22
DOI
出版ステータスPublished - 2007

出版物シリーズ

名前Progress in Mathematics
252
ISSN(印刷版)0743-1643
ISSN(電子版)2296-505X

ASJC Scopus subject areas

  • 分析
  • 代数と数論
  • 幾何学とトポロジー

フィンガープリント

「Geometric objects in an approach to quantum geometry」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル