Growth of modified Painlevé transcendents of the fifth and the third kind

Shun Shimomura

研究成果: Article査読

6 被引用数 (Scopus)

抄録

For a solution y(x) of the fifth (resp. third) Painlevé equation, the function w(z) = y(ez) is meromorphic in ℂ. It is proved that T(r, w)=O(eΛr) (resp. O(eΛr)), where Λ (resp. Λ) is some positive number independent of w(z). Moreover, using this result, we estimate the proximity functions m(r, w), m(r, 1/(w-c)) (cℂ).

本文言語English
ページ(範囲)231-247
ページ数17
ジャーナルForum Mathematicum
16
2
DOI
出版ステータスPublished - 2004 1 1

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

フィンガープリント 「Growth of modified Painlevé transcendents of the fifth and the third kind」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル