Hamiltonian cycles with all small even chords

Guantao Chen, Katsuhiro Ota, Akira Saito, Yi Zhao

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Let G be a graph of order n<3. An even squared Hamiltonian cycle (ESHC) of G is a Hamiltonian cycle C= v1v2... vn v1 of G with chords vivi+ 3 for all 1≤i≤n (where vn+ j= vj for j<1). When n is even, an ESHC contains all bipartite 2-regular graphs of order n. We prove that there is a positive integer N such that for every graph G of even order n<N, if the minimum degree is δ(G)<n2+92, then G contains an ESHC. We show that the condition of n being even cannot be dropped and the constant 92 cannot be replaced by 1. Our results can be easily extended to even kth powered Hamiltonian cycles for all k<2.

本文言語English
ページ(範囲)1226-1240
ページ数15
ジャーナルDiscrete Mathematics
312
6
DOI
出版ステータスPublished - 2012 3 28

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 離散数学と組合せ数学

フィンガープリント

「Hamiltonian cycles with all small even chords」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル