Hamiltonian structures for compact homogeneous universes

Masayuki Tanimoto, Tatsuhiko Koike, Akio Hosoya

研究成果: Article査読

15 被引用数 (Scopus)

抄録

Hamiltonian structures for spatially compact locally homogeneous vacuum universes are investigated, provided that the set of dynamical variables contains the Teichmüller parameters, parameterizing the purely global geometry. One of the key ingredients of our arguments is a suitable mathematical expression for quotient manifolds, where the universal cover metric carries all the degrees of freedom of geometrical variations, i.e., the covering group is fixed. We discuss general problems concerned with the use of this expression in the context of general relativity, and demonstrate the reduction of the Hamiltonians for some examples. For our models, all the dynamical degrees of freedom in Hamiltonian view are unambiguously interpretable as geometrical deformations, in contrast to the conventional open models.

本文言語English
ページ(範囲)6560-6577
ページ数18
ジャーナルJournal of Mathematical Physics
38
12
DOI
出版ステータスPublished - 1997 12

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

フィンガープリント 「Hamiltonian structures for compact homogeneous universes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル