Hardy spaces and maximal operators on real rank one semisimple lie groups I

Takeshi Kawazoe

研究成果: Article

4 引用 (Scopus)

抜粋

Let G be a real rank one connected semisimple Lie group with finite center. As well-known the radial, heat, and Poisson maximal operators satisfy the LP-norm inequalities for any p > 1 and a weak type Ll estimate. The aim of this paper is to find a subspace of L1 (G) from which they are bounded into L (G). As an analogue of the atomic Hardy space on the real line, we introduce an atomic Hardy space on G and prove that these maximal operators with suitable modifications are bounded from the atomic Hardy space on G to L1 (G).

元の言語English
ページ(範囲)1-18
ページ数18
ジャーナルTohoku Mathematical Journal
52
発行部数1
DOI
出版物ステータスPublished - 2000 1 1

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント Hardy spaces and maximal operators on real rank one semisimple lie groups I' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用