TY - JOUR
T1 - Heme controls the structural rearrangement of its sensor protein mediating the hemolytic bacterial survival
AU - Nishinaga, Megumi
AU - Sugimoto, Hiroshi
AU - Nishitani, Yudai
AU - Nagai, Seina
AU - Nagatoishi, Satoru
AU - Muraki, Norifumi
AU - Tosha, Takehiko
AU - Tsumoto, Kouhei
AU - Aono, Shigetoshi
AU - Shiro, Yoshitsugu
AU - Sawai, Hitomi
N1 - Funding Information:
We thank the beamline staff at SPring-8 for their assistance with data collection. X-ray diffraction experiments were performed at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (2017A2600, 2017B2575, 2018A2576, and 2019A2519) and RIKEN (20170091), and at BL44XU under the Collaborative Research Program of the Institute for Protein Research, Osaka University (Proposal No. 2014A6955, 2014B6955, and 2015A6548). Funding for this work was provided by the Japan Society for the Promotion of Science KAKENHI Grant numbers JP26220807 (to Y.S.), JP18H02396 (H. Sugimoto), JP18K05321 (H. Sawai), and a Grant-in-Aid for Scientific Research on Innovative Areas “Integrated Biometal Science: Research to Explore Dynamics of Metals in Cellular System” 19H05761 (to Y.S.), the Fumi Yama-mura Memorial Foundation for Female Natural Scientists from Chuo Mitsui Trust and Banking (to H. Sawai), Hyogo Science and Technology Association (to H. Sawai), RIKEN Pioneering Projects “Integrated Lipidology” (to H. Sawai), and “Fundamental Principles Underlying the Hierarchy of Matter” (to Y.S.). This research was partially supported by the Cooperative Research Program of the Institute for Molecular Science under Grant number 238 and Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research [BINDS]) for AMED under Grant number JP18am0101094. We are grateful to Prof. Emma. L. Raven (University of Bristol, UK) for stimulating discussions and critical reading of the manuscript.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Hemes (iron-porphyrins) are critical for biological processes in all organisms. Hemolytic bacteria survive by acquiring b-type heme from hemoglobin in red blood cells from their animal hosts. These bacteria avoid the cytotoxicity of excess heme during hemolysis by expressing heme-responsive sensor proteins that act as transcriptional factors to regulate the heme efflux system in response to the cellular heme concentration. Here, the underlying regulatory mechanisms were investigated using crystallographic, spectroscopic, and biochemical studies to understand the structural basis of the heme-responsive sensor protein PefR from Streptococcus agalactiae, a causative agent of neonatal life-threatening infections. Structural comparison of heme-free PefR, its complex with a target DNA, and heme-bound PefR revealed that unique heme coordination controls a >20 Å structural rearrangement of the DNA binding domains to dissociate PefR from the target DNA. We also found heme-bound PefR stably binds exogenous ligands, including carbon monoxide, a by-product of the heme degradation reaction.
AB - Hemes (iron-porphyrins) are critical for biological processes in all organisms. Hemolytic bacteria survive by acquiring b-type heme from hemoglobin in red blood cells from their animal hosts. These bacteria avoid the cytotoxicity of excess heme during hemolysis by expressing heme-responsive sensor proteins that act as transcriptional factors to regulate the heme efflux system in response to the cellular heme concentration. Here, the underlying regulatory mechanisms were investigated using crystallographic, spectroscopic, and biochemical studies to understand the structural basis of the heme-responsive sensor protein PefR from Streptococcus agalactiae, a causative agent of neonatal life-threatening infections. Structural comparison of heme-free PefR, its complex with a target DNA, and heme-bound PefR revealed that unique heme coordination controls a >20 Å structural rearrangement of the DNA binding domains to dissociate PefR from the target DNA. We also found heme-bound PefR stably binds exogenous ligands, including carbon monoxide, a by-product of the heme degradation reaction.
UR - http://www.scopus.com/inward/record.url?scp=85104344339&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104344339&partnerID=8YFLogxK
U2 - 10.1038/s42003-021-01987-5
DO - 10.1038/s42003-021-01987-5
M3 - Article
C2 - 33850260
AN - SCOPUS:85104344339
SN - 2399-3642
VL - 4
JO - Communications Biology
JF - Communications Biology
IS - 1
M1 - 467
ER -