High Density Electrical and Optical Assembly for Subminiature VCSEL-Based Optical Engine

Naohiro Kohmu, Maho Ishii, Takaaki Ishigure

研究成果: Article査読

1 被引用数 (Scopus)

抄録

In this paper, we propose a subminiature (10.9 mm × 56.6 mm) vertical cavity surface emitting laser (VCSEL) based optical engine with low crosstalk penalty for on-board applications. When applying optical engines to on-board interconnects, ICs (laser drivers and transimpedance amplifiers) and active optical devices (light sources and photo detectors) must be mounted densely to make the footprint as small as possible. It is a concern that such a high-density integration could increase the crosstalk between transmitter (Tx) and receiver (Rx) devices, which could be caused by the supply current difference between the circuit from laser drivers to light source and the circuit from photo detectors to transimpedance amplifiers. In this paper, by inserting a gap in the ground electrode, a compact optical engine (less than half of the footprint of QSFP-DD compliant engines) enabling a 25.78-Gbit/s error-free optical transmission is successfully fabricated. We optimize the gap width to decrease the crosstalk while maintaining efficient heat dissipation via the electrode. We compare the characteristics of the fabricated optical engine to the engine with the gap-less ground electrode structure formed in the same compact size. Then, we both theoretically and experimentally confirm a link power budget savings of about 1.8-dB. which is sustained even under high-temperature (Tc = 70 °C) operation. In addition, to realize further high-density assembly, we also represent a lens-less optical coupling by inserting a 90°-bent graded-index (GI) core polymer waveguide between the optical transmitter and a multimode fiber. The transmission performance of the 90°-bent GI-core waveguide is preliminary evaluated, and we successfully transmit a 53.125-Gbit/s PAM4 optical signals experimentally.

本文言語English
ジャーナルIEEE Transactions on Components, Packaging and Manufacturing Technology
DOI
出版ステータスAccepted/In press - 2021

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 産業および生産工学
  • 電子工学および電気工学

フィンガープリント

「High Density Electrical and Optical Assembly for Subminiature VCSEL-Based Optical Engine」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル