High stability of thermoresponsive polymer-brush-grafted silica beads as chromatography matrices

Kenichi Nagase, Jun Kobayashi, Akihiko Kikuchi, Yoshikatsu Akiyama, Hideko Kanazawa, Teruo Okano

研究成果: Article

40 引用 (Scopus)

抜粋

Thermo-responsive chromatography matrices with three types of graft architecture were prepared, and their separation performance and stability for continuous use were investigated. Poly(N-isopropylacrylamide)(PIPAAm) hydrogel-modified silica beads were prepared by a radical polymerization through modified 4,4′-azobis(4-cyanovaleric acid) and N,N′- methylenebisacrylamide. Dense PIPAAm brush-grafted silica beads and dense poly(N-tert-Butylacrylamide (tBAAm)-b-IPAAm) brush-grafted silica beads were prepared through a surface-initiated atom transfer radical polymerization (ATRP) using CuCl/CuCl 2/ Tris(2-(N,N-dimethylamino)ethyl)amine (Me 6TREN) as an ATRP catalytic system and 2-propanol as a reaction solvent. Dense PIPAAm brush-grafted silica beads exhibited the highest separation performance because of their strong hydrophobic interaction between the densely grafted well-defined PIPAAm brush on silica-bead surfaces and analytes. Using an alkaline mobile phase, dense themoresponsive polymer brushes, especially having a hydrophobic basal layer, exhibited a high stability for continuous use, because polymer brush on the silica bead surfaces prevented the access of water to silica surface, leading to the hydrolysis of silica and cleavage of grafted polymers. Thus, the precisely modulating graft configuration of thermoresponsive polymers provided chromatography matrices with a high separation efficiency and stability for continuous use, resulting in elongating the longevity of chromatographic column.

元の言語English
ページ(範囲)1998-2008
ページ数11
ジャーナルACS Applied Materials and Interfaces
4
発行部数4
DOI
出版物ステータスPublished - 2012 4 25

    フィンガープリント

ASJC Scopus subject areas

  • Materials Science(all)
  • Medicine(all)

これを引用