抄録
A highly energy-conservative second-order-accurate finite difference method for the cylindrical coordinate system is developed. It is rigorously proved that energy conservation in discretized space is satisfied when appropriate interpolation schemes are used. This argument holds not only for an unequally spaced mesh but also for an equally spaced mesh on cylindrical coordinates but not on Cartesian coordinates. Numerical tests are undertaken for an inviscid flow with various schemes, and it turns out that the proposed scheme offers a superior energy-conservation property and greater stability than the intuitive and previously proposed methods, for both equally spaced and unequally spaced meshes.
本文言語 | English |
---|---|
ページ(範囲) | 478-498 |
ページ数 | 21 |
ジャーナル | Journal of Computational Physics |
巻 | 181 |
号 | 2 |
DOI | |
出版ステータス | Published - 2002 9月 20 |
外部発表 | はい |
ASJC Scopus subject areas
- 数値解析
- モデリングとシミュレーション
- 物理学および天文学(その他)
- 物理学および天文学(全般)
- コンピュータ サイエンスの応用
- 計算数学
- 応用数学