Highly energy-conservative finite difference method for the cylindrical coordinate system

Koji Fukagata, Nobuhide Kasagi

研究成果: Article査読

119 被引用数 (Scopus)

抄録

A highly energy-conservative second-order-accurate finite difference method for the cylindrical coordinate system is developed. It is rigorously proved that energy conservation in discretized space is satisfied when appropriate interpolation schemes are used. This argument holds not only for an unequally spaced mesh but also for an equally spaced mesh on cylindrical coordinates but not on Cartesian coordinates. Numerical tests are undertaken for an inviscid flow with various schemes, and it turns out that the proposed scheme offers a superior energy-conservation property and greater stability than the intuitive and previously proposed methods, for both equally spaced and unequally spaced meshes.

本文言語English
ページ(範囲)478-498
ページ数21
ジャーナルJournal of Computational Physics
181
2
DOI
出版ステータスPublished - 2002 9月 20
外部発表はい

ASJC Scopus subject areas

  • 数値解析
  • モデリングとシミュレーション
  • 物理学および天文学(その他)
  • 物理学および天文学(全般)
  • コンピュータ サイエンスの応用
  • 計算数学
  • 応用数学

フィンガープリント

「Highly energy-conservative finite difference method for the cylindrical coordinate system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル