Human activity recognition from environmental background sounds for Wireless Sensor Networks

Yi Zhan, Shun Miura, Jun Nishimura, Tadahiro Kuroda

    研究成果: Conference contribution

    12 被引用数 (Scopus)

    抄録

    Sound feature extraction Mel Frequency Cepstral Coefficients (MFCC) and classification Dynamic Time Warping (DTW) algorithms are applied to recognizing the background sounds in the human daily activities. Applying these algorithms to fourteen typical daily activity sounds, average recognition accuracy of 92.5% can be achieved. In these algorithms, how two parameters (Le., Mel filters number and frame-to-frame overlap) affect system's calculation burden and accuracy is also investigated, By adjusting these two parameters to a suitable combination, the calculation burden can be reduced by 61.6% while maintaining the system's average accuracy rate at approximate 90%. This is promising for future integrating with other sensor(s) to fulfill daily activity recognition work by using power aware Wireless Sensor Networks (WSN) system.

    本文言語English
    ホスト出版物のタイトル2007 IEEE International Conference on Networking, Sensing and Control, ICNSC'07
    ページ307-312
    ページ数6
    DOI
    出版ステータスPublished - 2007 10月 1
    イベント2007 IEEE International Conference on Networking, Sensing and Control, ICNSC'07 - London, United Kingdom
    継続期間: 2007 4月 152007 4月 17

    出版物シリーズ

    名前2007 IEEE International Conference on Networking, Sensing and Control, ICNSC'07

    Other

    Other2007 IEEE International Conference on Networking, Sensing and Control, ICNSC'07
    国/地域United Kingdom
    CityLondon
    Period07/4/1507/4/17

    ASJC Scopus subject areas

    • コンピュータ ネットワークおよび通信
    • 制御およびシステム工学

    フィンガープリント

    「Human activity recognition from environmental background sounds for Wireless Sensor Networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル