Hurwitz equivalence for lefschetz fibrations and their multisections

R. Inanç Baykur, Kenta Hayano

研究成果: Chapter

1 被引用数 (Scopus)

抄録

In this article, we characterize isomorphism classes of Lefschetz fibrations with multisections via their monodromy factorizations. We prove that two Lefschetz fibrations with multisections are isomorphic if and only if their monodromy factorizations in the relevant mapping class groups are related to each other by a finite collection of modifications, which extend the well-known Hurwitz equivalence. This in particular characterizes isomorphism classes of Lefschetz pencils. We then show that, from simple relations in the mapping class groups, one can derive new (and old) examples of Lefschetz fibrations which cannot be written as fiber sums of blown-up pencils.

本文言語English
ホスト出版物のタイトルContemporary Mathematics
出版社American Mathematical Society
ページ1-24
ページ数24
DOI
出版ステータスPublished - 2016

出版物シリーズ

名前Contemporary Mathematics
675
ISSN(印刷版)0271-4132
ISSN(電子版)1098-3627

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Hurwitz equivalence for lefschetz fibrations and their multisections」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル