Ideal polytopes and face structures of some combinatorial optimization problems

Yoshiko T. Ikebe, Akihisa Tamura

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Given a finite set X and a family of "feasible" subsets F of X, the 0-1 polytope P (F is defined as the convex hull of all the characteristic vectors of members of F We show that under a certain assumption a special type of face of P(F) is equivalent to the ideal polytope of some pseudo-ordered set. Examples of families satisfying the assumption are those related to the maximum stable set problem, set packing and set partitioning problems, and vertex coloring problem. Using this fact, we propose a new heuristic for such problems and give results of our preliminary computational experiments for the maximum stable set problem.

本文言語English
ページ(範囲)1-15
ページ数15
ジャーナルMathematical Programming
71
1
DOI
出版ステータスPublished - 1995 11
外部発表はい

ASJC Scopus subject areas

  • Software
  • Mathematics(all)

フィンガープリント 「Ideal polytopes and face structures of some combinatorial optimization problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル