Identification of cutting tool for avoiding collision in turning-milling machine

Achmad Pratama Rifai, Hideki Aoyama

研究成果: Paper査読

抄録

Turning-milling machine contains a large number of tools, where wrong disposition of tools possesses collision risks. Operator mistakes and lack of proper communication feedback of the machine technology may lead to error that harms the machines. The aim of this study is developing fast, precise, and reliable automatic machining tool recognition system in turning-milling machines. The approach consists of two steps, predicting the class of the tool using convolutional neural network, and identifying the exact type of the tools by performing feature detection, description, and matching.

本文言語English
ページ477-482
ページ数6
出版ステータスPublished - 2017
イベント20th International Symposium on Advances in Abrasive Technology, ISAAT 2017 - Okinawa, Japan
継続期間: 2017 12月 32017 12月 6

Conference

Conference20th International Symposium on Advances in Abrasive Technology, ISAAT 2017
国/地域Japan
CityOkinawa
Period17/12/317/12/6

ASJC Scopus subject areas

  • 材料力学
  • 産業および生産工学
  • 機械工学
  • 材料科学(全般)

フィンガープリント

「Identification of cutting tool for avoiding collision in turning-milling machine」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル