Image denoising by adaptive directional lifting-based discrete wavelet transform and quantization

Naoki Furuhashi, Azusa Oota, Taichi Yoshida, Masaaki Ikehara

研究成果: Conference contribution

抄録

In this paper, we propose the non-local method for image de-noising via adaptive directional lifting-based discrete wavelet transform (ADL) and quantization. The non-local methods such as non-local means are interested in image denoising based on the self-similarity. They search similar blocks and estimate the original value. The proposed method doesn't search but generates new similar blocks by ADL with multiple directions, and quantization to denoise. It improves the denoising quality and reduces the computational complexity. Finally, we compare the proposed and conventional method, and show an advantage of them.

本文言語English
ホスト出版物のタイトルConference Record of the 47th Asilomar Conference on Signals, Systems and Computers
出版社IEEE Computer Society
ページ1995-1999
ページ数5
ISBN(印刷版)9781479923908
DOI
出版ステータスPublished - 2013
イベント2013 47th Asilomar Conference on Signals, Systems and Computers - Pacific Grove, CA, United States
継続期間: 2013 11月 32013 11月 6

出版物シリーズ

名前Conference Record - Asilomar Conference on Signals, Systems and Computers
ISSN(印刷版)1058-6393

Other

Other2013 47th Asilomar Conference on Signals, Systems and Computers
国/地域United States
CityPacific Grove, CA
Period13/11/313/11/6

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Image denoising by adaptive directional lifting-based discrete wavelet transform and quantization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル