Image noise level estimation by searching for smooth patches with discrete cosine transform

Hayato Katase, Takuro Yamaguchi, Takanori Fujisawa, Masaaki Ikehara

    研究成果: Conference contribution

    1 被引用数 (Scopus)

    抄録

    When denoising an image, noise level is one of the most vital input parameters, because setting wrong noise level affects a result of denoising. Therefore, the noise level must be estimated accurately. In this paper, we propose a new accurate noise level estimation method based on the characteristic of discrete cosine transform (DCT) coefficients. This characteristic is that the high-frequency coefficients of the smooth patches can be assumed to zero. We select smooth patches from a distribution of the standard deviation of high-frequency coefficients in a noisy image, and a distribution function of the standard deviation of high-frequency coefficients in an only noise image. Moreover, we propose a method that the estimated noise level is calculated from high-frequency coefficients in a noisy image. The experiment results with many images demonstrate that the proposed method estimates the noise levels more accurately, in comparison with the conventional methods.

    本文言語English
    ホスト出版物のタイトル2016 IEEE 59th International Midwest Symposium on Circuits and Systems, MWSCAS 2016
    出版社Institute of Electrical and Electronics Engineers Inc.
    ISBN(電子版)9781509009169
    DOI
    出版ステータスPublished - 2016 7 2
    イベント59th IEEE International Midwest Symposium on Circuits and Systems, MWSCAS 2016 - Abu Dhabi, United Arab Emirates
    継続期間: 2016 10 162016 10 19

    出版物シリーズ

    名前Midwest Symposium on Circuits and Systems
    0
    ISSN(印刷版)1548-3746

    Other

    Other59th IEEE International Midwest Symposium on Circuits and Systems, MWSCAS 2016
    国/地域United Arab Emirates
    CityAbu Dhabi
    Period16/10/1616/10/19

    ASJC Scopus subject areas

    • 電子材料、光学材料、および磁性材料
    • 電子工学および電気工学

    フィンガープリント

    「Image noise level estimation by searching for smooth patches with discrete cosine transform」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル