Independence number and vertex-disjoint cycles

Yoshimi Egawa, Hikoe Enomoto, Stanislav Jendrol, Katsuhiro Ota, Ingo Schiermeyer

研究成果: Article査読

8 被引用数 (Scopus)

抄録

In this paper we consider graphs which have no k vertex-disjoint cycles. For given integers k, α let f (k, α) be the maximum order of a graph G with independence number α (G) ≤ α, which has no k vertex-disjoint cycles. We prove that f (k, α) = 3 k + 2 α - 3 if 1 ≤ α ≤ 5 or 1 ≤ k ≤ 2, and f (k, α) ≥ 3 k + 2 α - 3 in general. We also prove the following results: (1) there exists a constant cα (depending only on α) such that f (k, α) ≤ 3 k + cα, (2) there exists a constant tk (depending only on k) such that f (k, α) ≤ 2 α + tk, and (3) there exists no absolute constant c such that f (k, α) ≤ c (k + α).

本文言語English
ページ(範囲)1493-1498
ページ数6
ジャーナルDiscrete Mathematics
307
11-12
DOI
出版ステータスPublished - 2007 5 28

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 離散数学と組合せ数学

フィンガープリント

「Independence number and vertex-disjoint cycles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル