Inductive inference of logic programs based on algebraic semantics

研究成果: Article査読

7 被引用数 (Scopus)

抄録

In this paper we present a new inductive inference algorithm for a class of logic programs, called linear monadic logic programs. It has several unique features not found in Shapiro's Model Inference System. It has been proved that a set of trees is rational if and only if it is computed by a linear monadic logic program, and that the rational set of trees is recognized by a tree automaton. Based on these facts, we can reduce the problem of inductive inference of linear monadic logic programs to the problem of inductive inference of tree automata. Further several efficient inference algorithms for finite automata have been developed. We extend them to an inference algorithm for tree automata and use it to get an efficient inductive inference algorithm for linear monadic logic programs. The correctness, time complexity and several comparisons of our algorithm with Model Inference System are shown.

本文言語English
ページ(範囲)365-380
ページ数16
ジャーナルNew Generation Computing
7
4
DOI
出版ステータスPublished - 1990 4月
外部発表はい

ASJC Scopus subject areas

  • ソフトウェア
  • 理論的コンピュータサイエンス
  • ハードウェアとアーキテクチャ
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Inductive inference of logic programs based on algebraic semantics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル