TY - JOUR
T1 - Inhibitory Effect of Dextran Derivatives on Multidrug Resistance-Related Efflux Transporters in Vitro
AU - Morimoto, Kaori
AU - Ishii, Makoto
AU - Sugimoto, Yoshikazu
AU - Ogihara, Takuo
AU - Tomita, Mikio
N1 - Funding Information:
This work was supported by JPS KAKENHI Grant No. JP18K06790.
Publisher Copyright:
© 2022 The Pharmaceutical Society of Japan.
PY - 2022/8
Y1 - 2022/8
N2 - Dextran is a promising candidate as a nanocarrier of chemotherapeutic drugs due to its biocompatibility, biodegradability, and ability to accumulate in tumors. Furthermore, dextran derivatives interact with P-glycoprotein (P-gp), so we hypothesized that they may be available as tumor-specific drug delivery systems with the ability to reverse multidrug resistance. Here, to test this idea, we investigated whether dextran and its derivatives inhibit breast cancer resistance protein (BCRP), multidrug resistance associated protein 1 (MRP1), and P-gp in vitro. First, we examined their effect on the uptake of specific fluorescent substrates by inside-out Sf-9 membrane vesicles overexpressing BCRP, MRP1, and P-gp. BCRP and MRP1 were significantly inhibited by 2-hydroxypropyl-trimethylammonium-dextran of 4 and 70kDa (Q-D4 and Q-D70) at a concentration near the clinically used concentration of dextran; however, P-gp was not inhibited. A structure–activity study showed that Q-D4, Q-D70, and 40kDa diethylaminoethyl-dextran (DEAE-D40) significantly inhibited BCRP, while 4, 40, and 70kDa dextrans (D4, D40, and D70), dextran sulfate (Sul-D40), and the individual saccharide components of dextran did not. These results suggest that the cationic side chains, but not the saccharides, are important for BCRP inhibition. Finally, cell-based efflux assay was conducted. Q-D4, Q-D70, and DEAE-D40 did not specifically increase the retention of Hoechst33342 in BCRP-overexpressing KB cells. Similarly, Q-D4 and Q-D70 did not affect the intracellular retention of specific fluorescent substrates in MRP1- and P-gp-overexpressing KB cells. The ineffectiveness in cellular systems is presumably due to inability of the dextran derivatives to access transporters located on the cytoplasmic side of the cell membrane.
AB - Dextran is a promising candidate as a nanocarrier of chemotherapeutic drugs due to its biocompatibility, biodegradability, and ability to accumulate in tumors. Furthermore, dextran derivatives interact with P-glycoprotein (P-gp), so we hypothesized that they may be available as tumor-specific drug delivery systems with the ability to reverse multidrug resistance. Here, to test this idea, we investigated whether dextran and its derivatives inhibit breast cancer resistance protein (BCRP), multidrug resistance associated protein 1 (MRP1), and P-gp in vitro. First, we examined their effect on the uptake of specific fluorescent substrates by inside-out Sf-9 membrane vesicles overexpressing BCRP, MRP1, and P-gp. BCRP and MRP1 were significantly inhibited by 2-hydroxypropyl-trimethylammonium-dextran of 4 and 70kDa (Q-D4 and Q-D70) at a concentration near the clinically used concentration of dextran; however, P-gp was not inhibited. A structure–activity study showed that Q-D4, Q-D70, and 40kDa diethylaminoethyl-dextran (DEAE-D40) significantly inhibited BCRP, while 4, 40, and 70kDa dextrans (D4, D40, and D70), dextran sulfate (Sul-D40), and the individual saccharide components of dextran did not. These results suggest that the cationic side chains, but not the saccharides, are important for BCRP inhibition. Finally, cell-based efflux assay was conducted. Q-D4, Q-D70, and DEAE-D40 did not specifically increase the retention of Hoechst33342 in BCRP-overexpressing KB cells. Similarly, Q-D4 and Q-D70 did not affect the intracellular retention of specific fluorescent substrates in MRP1- and P-gp-overexpressing KB cells. The ineffectiveness in cellular systems is presumably due to inability of the dextran derivatives to access transporters located on the cytoplasmic side of the cell membrane.
KW - breast cancer resistance protein (BCRP)
KW - dextran derivative
KW - multidrug resistance associated protein 1 (MRP1)
KW - P-glycoprotein
UR - http://www.scopus.com/inward/record.url?scp=85135207247&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85135207247&partnerID=8YFLogxK
U2 - 10.1248/bpb.b21-01035
DO - 10.1248/bpb.b21-01035
M3 - Article
C2 - 35908887
AN - SCOPUS:85135207247
VL - 45
SP - 1036
EP - 1042
JO - Biological and Pharmaceutical Bulletin
JF - Biological and Pharmaceutical Bulletin
SN - 0918-6158
IS - 8
ER -