Inositol 1,4,5-trisphosphate receptors are essential for the development of the second heart field

Maki Nakazawa, Keiko Uchida, Megumi Aramaki, Kazuki Kodo, Chihiro Yamagishi, Takao Takahashi, Katsuhiko Mikoshiba, Hiroyuki Yamagishi

研究成果: Article査読

25 被引用数 (Scopus)

抄録

Congenital heart defects (CHDs) occur in 0.5-1% of live births, yet the underlying genetic etiology remains mostly unknown. Recently, a new source of myocardial cells, namely the second heart field (SHF), was discovered in the splanchnic mesoderm. Abnormal development of the SHF leads to a spectrum of outflow tract defects, such as persistent truncus arteriosus and tetralogy of Fallot. Intracellular Ca 2+ signaling is known to be essential for many aspects of heart biology including heart development, but its role in the SHF is uncertain. Here, we analyzed mice deficient for genes encoding inositol 1,4,5-trisphosphate receptors (IP 3Rs), which are intracellular Ca 2+ release channels on the endo/sarcoplasmic reticulum that mediate Ca 2+ mobilization. Mouse embryos that are double mutant for IP 3R type 1 and type 3 (IP 3R1 -/-IP 3R3 -/-) show hypoplasia of the outflow tract and the right ventricle, reduced expression of specific molecular markers and enhanced apoptosis of mesodermal cells in the SHF. Gene expression analyses suggest that IP 3R-mediated Ca 2+ signaling may involve, at least in part, the Mef2C-Smyd1 pathway, a transcriptional cascade essential for the SHF. These data reveal that IP 3R type 1 and type 3 may play a redundant role in the development of the SHF.

本文言語English
ページ(範囲)58-66
ページ数9
ジャーナルJournal of Molecular and Cellular Cardiology
51
1
DOI
出版ステータスPublished - 2011 7月

ASJC Scopus subject areas

  • 分子生物学
  • 循環器および心血管医学

フィンガープリント

「Inositol 1,4,5-trisphosphate receptors are essential for the development of the second heart field」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル