Integration of constraint logic programming and artificial neural networks for driving robots

Koichiro Ishikawa, Tsutomu Fujinami, Akito Sakurai

研究成果: Paper査読

2 被引用数 (Scopus)

抄録

We propose a robot architecture to integrate symbolic and non-symbolic information processings. Artificial neural networks (ANN) are quick, flexible and robust. Symbolic processing is on the other hand comprehensible, effective, controllable, and consistent. To integrate symbolic and non-symbolic methods, we consider the relation between a robot and its environment as constraints. To describe and solve such constraints we turn to Constraint Logic Programming (CLP). To construct a robot that works in the complex environment, CLP and ANN are integrated into a unified framework such that CLP evaluates the behavior candidates proposed by ANN according to the constraints and ANN learns adequate behavior according to evaluations by CLP. We implemented the decision process in our robot that drove through a test course as we expected.

本文言語English
ページ1011-1016
ページ数6
出版ステータスPublished - 2001 12月 1
イベント2001 IEEE/RSJ International Conference on Intelligent Robots and Systems - Maui, HI, United States
継続期間: 2001 10月 292001 11月 3

Other

Other2001 IEEE/RSJ International Conference on Intelligent Robots and Systems
国/地域United States
CityMaui, HI
Period01/10/2901/11/3

ASJC Scopus subject areas

  • 制御およびシステム工学
  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ サイエンスの応用

フィンガープリント

「Integration of constraint logic programming and artificial neural networks for driving robots」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル