TY - JOUR
T1 - Intelligent stabilization control to arbitrary equilibrium point of double inverted pendulum
AU - Takahashi, Masaki
AU - Narukawa, Terumasa
AU - Yoshida, Kazuo
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2004/1
Y1 - 2004/1
N2 - This study aims at establishing a robust and effective intelligent control method for nonlinear and complicated systems by extending the integrated Cubic Neural Network (CNN). In the method, an integrator neural network acquires optimum switching and integration of several controllers for a different local purpose by calculating the fitness based on the system object using the genetic algorithm. The proposed method is applied to an equilibrium point transfer and stabilization control of a double pendulum that possesses four equilibrium points, namely Down-Down, Down-Up, Up-Down and Up-Up points. In order to verify the effectiveness of the proposed method, simulations and experiments were carried out. As a result, it was demonstrated that the integrated intelligent controllers can transfer and stabilize the double pendulum from the arbitrary equilibrium points to arbitrary one without touching the cart position limit. In addition, by taking account of energy variation, the double pendulum was transferred from Up-Down to Up-Up and was stabilized without falling down.
AB - This study aims at establishing a robust and effective intelligent control method for nonlinear and complicated systems by extending the integrated Cubic Neural Network (CNN). In the method, an integrator neural network acquires optimum switching and integration of several controllers for a different local purpose by calculating the fitness based on the system object using the genetic algorithm. The proposed method is applied to an equilibrium point transfer and stabilization control of a double pendulum that possesses four equilibrium points, namely Down-Down, Down-Up, Up-Down and Up-Up points. In order to verify the effectiveness of the proposed method, simulations and experiments were carried out. As a result, it was demonstrated that the integrated intelligent controllers can transfer and stabilize the double pendulum from the arbitrary equilibrium points to arbitrary one without touching the cart position limit. In addition, by taking account of energy variation, the double pendulum was transferred from Up-Down to Up-Up and was stabilized without falling down.
KW - Cubic neural network
KW - Double pendulum
KW - Genetic algorithm
KW - Intelligent control
KW - Nonlinear control
UR - http://www.scopus.com/inward/record.url?scp=1842633340&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1842633340&partnerID=8YFLogxK
U2 - 10.1299/kikaic.70.15
DO - 10.1299/kikaic.70.15
M3 - Article
AN - SCOPUS:1842633340
SN - 0387-5024
VL - 70
SP - 15
EP - 22
JO - Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C
JF - Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C
IS - 1
ER -