Internal sensor based kinematic parameters estimation using acceleration/deceleration motion

Kaiki Fukutoku, Hirotoshi Masuda, Toshiyuki Murakami

研究成果: Conference contribution

抄録

Motion measurement systems play an important role in a wide range of fields such as robot motion control and human motion analysis. Motion measurement methods using a camera, which is an external sensor, have problems such as low sampling rate and limited measurement range. On the other hand, the method using the encoder or inertial sensor, which is an internal sensor, has almost no limitation on the measurement range. Moreover, it can be measured at a high sampling rate. However, when using the internal sensor, it was necessary to use the kinematic model and kinematic parameters of robots and humans. Errors in these parameters lead to reduced accuracy in kinematic calculations. Therefore, the control performance and analysis accuracy are reduced. To solve these problems, we propose a method for estimating kinematic parameters using the inertial sensor. The proposed method uses a kinematic relational expression in the acceleration dimension. Therefore, kinematic parameters can be estimated without using absolute position information. In this paper, the proposed method is applied to the 3-link manipulator and the human body. The effectiveness of the proposed method is evaluated by comparing the estimated link length with the measured value.

本文言語English
ホスト出版物のタイトル2021 IEEE International Conference on Mechatronics, ICM 2021
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781728144429
DOI
出版ステータスPublished - 2021 3月 7
イベント2021 IEEE International Conference on Mechatronics, ICM 2021 - Kashiwa, Japan
継続期間: 2021 3月 72021 3月 9

出版物シリーズ

名前2021 IEEE International Conference on Mechatronics, ICM 2021

Conference

Conference2021 IEEE International Conference on Mechatronics, ICM 2021
国/地域Japan
CityKashiwa
Period21/3/721/3/9

ASJC Scopus subject areas

  • 人工知能
  • 機械工学
  • 制御と最適化

フィンガープリント

「Internal sensor based kinematic parameters estimation using acceleration/deceleration motion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル