Irrationality Results for Values of Generalized Tschakaloff Series

Masaaki Amou, Masanori Katsurada

研究成果: Article

2 引用 (Scopus)

抜粋

Arithmetical properties of values of the entire functionTq(x)=∑n=0x n/q(1/2)n(n+1), whereqis a parameter, q>1, were first studied by L. Tschakaloff (1921,Math. Ann.80, 62-74;84, 100-114). In this paper we introduce a generalization ofTq(x), given by (1.3), and prove the irrationality results for the values of (1.3) at rational points (see Theorem and Corollaries at the end of Section 1). One of the essential tools in the proof is a variant of Mahler's transcendence method, due to J. H. Loxton and A. J. van der Poorten (1977,in"Transcendence Theory: Advances and Applications," pp. 211-226, Academic Press, San Diego).

元の言語English
ページ(範囲)155-169
ページ数15
ジャーナルJournal of Number Theory
77
発行部数1
DOI
出版物ステータスPublished - 1999 7 1

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント Irrationality Results for Values of Generalized Tschakaloff Series' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用