Irrationality results for values of generalized Tschakaloff series II

Masaaki Amou, Masanori Katsurada

研究成果: Article査読

1 被引用数 (Scopus)

抄録

The study of irrationality properties of values of the generalized Tschakaloff series f(x) defined by (1.2) below was initiated by Duverney (Portugal. Math. 53(2) (1996) 229; Period. Math. Hungar. 35 (1997) 149), and continued by the authors (J. Number Theory 77 (1999) 155). The present paper proceeds to extend our previous result (Amou and Katsurada, 1999, Theorem). The irrationality of f(α) for any α ∈ Q\{0} is proved in a quantitative form under fairly general growth conditions on the coefficients of f(x) (Theorem 1), while the same result is shown in a certain 'limiting' situation of Theorem 1, at the cost of loosing a quantitative aspect (Theorem 2). The linear independence of certain values of a system of f(x) is also obtained (Theorem 3). The key idea in proving our previous result is a Mahler's transcendence method, due to Loxton and van der Poorten (in: A. Baker, D.W. Masser (Eds.), Transcendence Theory: Advances and Applications, Academic Press, San Diego, 1977, pp. 211-226), applied to an appropriate sequence of functions (see (2.4) and (2.5)). In order to establish Theorems 1 and 2, this method is enhanced by a certain technique which allows us to improve zero estimates for the remainder terms of Padé-type approximations (see Lemmas 3 and 4).

本文言語English
ページ(範囲)132-155
ページ数24
ジャーナルJournal of Number Theory
104
1
DOI
出版ステータスPublished - 2004 1月

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Irrationality results for values of generalized Tschakaloff series II」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル